
Big Bias Hunting in Amazonia:
Large-scale Computation and
Exploitation of RC4 Biases

Kenny Paterson

Information Security Group

@kennyog ; www.isg.rhul.ac.uk/~kp

Overview

• RC4

• Attacking RC4 in TLS

• Big bias hunting: Attacking RC4 in WPA/TKIP

• Concluding remarks

2

RC4

4

RC4

• Designed by Ron Rivest in late 1980s, became public in 1994.
• A byte-oriented stream cipher.

• Variable-length key.

• Elegant design, fast in software, very compact description, easy to
implement.

• Widely adopted in secure communications protocols:
• TLS

• WEP

• WPA/TKIP

• Kerberos

• MPPE

• …

4

5

RC4

5

RC4 State

Byte permutation and indices i and j

RC4 Key scheduling RC4 Keystream generation

6

Cryptanalysis of RC4 (Or: Isn’t RC4 Broken Already?)

• Given its wide-spread use, RC4 has been subject to a lot of
cryptanalysis.

• Biases in keystreams

• Key/state recovery attacks

• Related key attacks

• It’s usage in WEP was completely broken, starting with [FMS01].
• Full key-recovery attack now possible with 10k-20k packets [SVV11].

• Many short-term and long-term biases in its keystreams have been
identified.

• [FM00], [MS01], [M02], [M05], [MPS11], [SMPS11],…

• Why then is it still so popular in applications?

6

7

Popularity of RC4

• It’s fast and easy to implement.

• It’s hard to displace a widely-deployed algorithm without
practical, demonstrated attacks.

• The WEP disaster can be argued as a special case, where the
use of the algorithm was at fault, not the algorithm itself.

• Composition of key from long-term key and public counter enabled
special attacks.

• Lack of practical, demonstrated attacks on common
applications.

7

Attacking RC4 in TLS
Joint work with Nadhem AlFardan, Daniel J.
Bernstein, Bertram Poettering and Jacob C.N.
Schuldt

9

Broadcast Attack Setting

• Introduced by Mantin-Shamir in 2001.

• Imagine a fixed but unknown plaintext P is encrypted many
times under RC4 using different keys Ki.

• Attack recovers bytes of P by exploiting biases in RC4
keystreams.

• Different from usual setting: recover K from many (P,C) pairs.

9

10

Broadcast Attack – Example

• Example:
• Mantin-Shamir bias: Pr[Z2 = 0x00] ≈ 1/128

• But Cr = Pr  Zr.

• So C2 = P2 with probability 1/128.

• Hence, with enough encryptions, can recover P2 directly from C2.

• Just take the most common value of C2 as estimate for P2!

• Does the attack extend to other bytes of plaintext?

• Is the attack really applicable to RC4 in TLS?

• How many ciphertexts are needed for reliable plaintext
recovery?

10

Single-byte Biases in the RC4 Keystream

[Mantin-Shamir 2001]:

[Mironov 2002]:

Described distribution of Z1 (bias away from 0, sine-like distribution)

[Maitra-Paul-Sen Gupta 2011]: for 3 ≤ r ≤ 255

[Sen Gupta-Maitra-Paul-Sarkar 2011]:

Zi = value of i-th keystream byte

l = keylength

11

Approach in [ABPPS13]:

Based on the output from 245 random independent 128-bit RC4 keys, estimate the

keystream byte distributions for the first 256 bytes

This computation revealed many new biases in the RC4 keystream.

(Some of these were independently discovered and exploited in [IOWM13].)

Complete Single-byte Keystream Distributions

Z1

...

Z2 Z3
...

...

12

Keystream Distribution at
Position 1

P
ro

b
a

b
ili

ty

0.003906

Byte value

0.003950

0.003878

13

Keystream Distribution at
Position 1

Keystream Distribution at
Position 2

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

14

Keystream Distribution at
Position 3

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

15

Keystream Distribution at
Position 4

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

16

Keystream Distribution at
Position 5

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

17

Keystream Distribution at
Position 6

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

18

Keystream Distribution at
Position 7

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

19

Keystream Distribution at
Position 8

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

20

Keystream Distribution at
Position 9

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

21

Keystream Distribution at
Position 10

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

22

Keystream Distribution at
Position 11

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

23

Keystream Distribution at
Position 12

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

24

Keystream Distribution at
Position 13

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

25

Keystream Distribution at
Position 14

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

26

Keystream Distribution at
Position 15

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

27

Keystream Distribution at
Position 16

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

28

Keystream Distribution at
Position 17

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

29

Keystream Distribution at
Position 18

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

30

Keystream Distribution at
Position 19

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

31

Keystream Distribution at
Position 20

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

32

Keystream Distribution at
Position 21

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

33

Keystream Distribution at
Position 22

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

34

Keystream Distribution at
Position 23

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

35

Keystream Distribution at
Position 24

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

36

Keystream Distribution at
Position 25

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

37

Keystream Distribution at
Position 26

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

38

Keystream Distribution at
Position 27

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

39

Keystream Distribution at
Position 28

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

40

Keystream Distribution at
Position 29

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

41

Keystream Distribution at
Position 30

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

42

Keystream Distribution at
Position 31

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

43

Keystream Distribution at
Position 32

P
ro

b
a
b
ili

ty

0.003906

Byte value

0.003950

0.003878

44

All the Biases

45

46

Broadcast Attack for RC4 in TLS

Is the attack really applicable to RC4 in TLS?

• How is the RC4 algorithm actually used in TLS?

• How much TLS traffic is actually encrypted using RC4?

• How can we ensure that the same plaintext is repeatedly encrypted
under different keys?

• What is a good target for the repeated plaintext?

• Can we ensure the target plaintext aligns with the positions where
the keystream biases are present?

• How can we deal with the fact that there are multiple biases in each
keystream position Zr?

46

47

Broadcast Attack for RC4 in TLS

Is the attack really applicable to RC4 in TLS?

• How is the RC4 algorithm actually used in TLS?

• How much TLS traffic is actually encrypted using RC4?

• How can we ensure that the same plaintext is repeatedly encrypted
under different keys?

• What is a good target for the repeated plaintext?

• How can we deal with the fact that there are multiple biases in each
keystream position Zr?

47

48

Use of RC4 in TLS

48

MAC

SQN || HDR Application Data

RC4 Keystream

Ciphertext

MAC tag

HDR

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Application Data



49

Use of RC4 in TLS

• Fresh 128-bit key for RC4 for each TLS connection.
• The key is derived from the TLS master secret and nonces exchanged

in the TLS Handshake Protocol run between TLS Client and Server.

• Different key in each direction on secure channel.

• Think of it as a random 128-bit value.

• All bytes of RC4 keystream are used.

• But the first 36 bytes (roughly) are used to encrypt
unpredictable messages.

• The TLS Handshake Finished messages.

• So the Mantin-Shamir bias is not exploitable in this application 

49

• In the face of the BEAST and Lucky 13 attacks on CBC-based ciphersuites in
TLS, switching to RC4 was a recommended mitigation.

• Use of RC4 in the wild:

Rate of RC4 Usage in TLS

ICSI Certificate Notary

Jan. 2013 survey of 16 billion TLS connections:

Approx. 50% protected via RC4 ciphersuites

50

51

Broadcast Attack for RC4 in TLS

Is the attack really applicable to RC4 in TLS?

• How is the RC4 algorithm actually used in TLS?

• How much TLS traffic is actually encrypted using RC4?

• How can we ensure that the same plaintext is repeatedly encrypted
under different keys?

• What is a good target for the repeated plaintext?

• How can we deal with the fact that there are multiple biases in each
keystream position Zr?

51

How the Web Works

browser

TLS secure channel

Cookie
for

goodsite
.com

52

badsite.com

goodsite.com

53

How the Web Works

53

• Target plaintext is an HTTP secure cookie for goodsite.com.

• Browser Same Origin Policy prevents direct access to cookie.

• JavaScript running in the browser from badsite.com gives attacker the
repeated plaintext capability.

• The cookie is added automatically to every HTTP request sent from the
browser.

• JavaScript can pad requests in various ways to control exact position of the
cookie.

• Attacker needs to force a new TLS connection for each HTTP request.

• Can do this by having active MITM component closing TCP connection via TCP RST or
sequence of TCP FIN/ACK messages.

54

Broadcast Attack for RC4 in TLS

Is the attack really applicable to RC4 in TLS?

• How is the RC4 algorithm actually used in TLS?

• How much TLS traffic is actually encrypted using RC4?

• How can we ensure that the same plaintext is repeatedly encrypted
under different keys?

• What is a good target for the repeated plaintext?

• How can we deal with the fact that there are multiple biases in each
keystream position Zr?

54

We use an optimal statistical procedure based on Bayes’
theorem.

• This automatically deals with the presence of multiple biases in the keystream
bytes.

• [IOWM14] used a sub-optimal procedure relying only on the largest bias in each
position (and did not consider in detail the applicability to TLS).

Plaintext Recovery for TLS-RC4

55

Details of Statistical Analysis

Let c denote the n-vector of ciphertext bytes in position r.

We wish to maximise Pr[P=p|C=c].

Bayes theorem:

 Pr[P=p|C=c] = Pr[C=c |P=p].Pr[P=p]/Pr[C=c]

 = Pr[Z=c  (p,p,…,p)].Pr[P=p]/Pr[C=c]

Pr[C=c] is independent of the choice of p.

For simplicity, assume Pr[P=p] is constant.

Then to maximise Pr[P=p | C=c] over all choices of p, we simply need to
maximise the expression:

 Pr[Z=c  (p,p,…,p)].

56

C1

C2

C3

Cn

..
.

r

Details of Statistical Analysis

To maximise Pr[P=p | C=c] over all choices of p, we simply need to maximise
the expression:

 Pr[Z=c  (p,p,…,p)].

Formally, this is the likelihood of the keystream bytes Z=c  (p,p,…,p).

Let q = (q00, q01,…, qFF) denote the vector of keystream byte probabilities in
position r.

Let nx be the number of occurrences of byte value x in Z=c  (p,p,…,p).

Then:

 Pr[Z=c  (p,p,…,p)] =

Attack: compute this expression for each candidate p and output the value of
p giving the maximum value.

57

q00

 q01 qFF nFF n01 n00

…

Success Probability 220 Connections

58

59

Success Probability 221 Connections

60

Success Probability 222 Connections

61

Success Probability 223 Connections

62

Success Probability 224 Connections

63

Success Probability 225 Connections

64

Success Probability 226 Connections

65

Success Probability 227 Connections

66

Success Probability 228 Connections

67

Success Probability 229 Connections

68

Success Probability 230 Connections

69

Success Probability 231 Connections

70

Success Probability 232 Connections

Current Status of RC4 in TLS

Snapshot from ICSI Certificate Notary Project:

71

Comments

• Amount of TLS-RC4 traffic is declining, but not as quickly as we might hope.

• ICSI: from 50% to ~33%.

• SSL Pulse: 81% of 150k sites surveyed still support RC4.

• Security Pitfalls: 1% of 400k sites support only RC4!

• But attacks only get better with time…

• Double-byte bias attack in [ABPPS13] – more ciphertexts, but single connection, so faster
overall.

• Exploitation of known plaintext distributions.

• Ranking of plaintext candidates – e.g. for password recovery, only need password to be in
top T candidates.

• IT’S TIME TO STOP USING RC4 IN TLS!

72

Big bias hunting in Amazonia:
Attacking RC4 in WPA/TKIP
Joint work with Bertram Poettering
and Jacob C.N. Schuldt

Introduction to WPA/TKIP

• WEP, WPA, WPA2 are all IEEE standards for wireless LAN encryption under the
802.11 family.

• WEP (1999) is considered to be badly broken

• Beginning with [FMS01], now roughly 10k-20k packets needed for key recovery.

• Other attacks on integrity, authentication.

• WPA/TKIP was proposed by IEEE in 2003 as an intermediate solution.

• Allow reuse of same hardware, firmware-only upgrade.

• Hence only limited changes to WEP design were possible.

• Introduction of supposedly stronger per-frame keys (TKIP: Temporal Key Integrity Protocol).

74

Introduction to WPA/TKIP

• WPA was only intended as a temporary fix.

• WPA2 (2004) introduces a strong cryptographic solution based
on AES-CCM.

• But WPA is still in widespread use today.

• Vanhoef-Piessens (2013):

 71% of 6803 networks surveyed still permit WPA/TKIP; 19%
 allowed only WPA/TKIP.

• Significant previous analysis of WPA in [TB09], [SVV11].

75

Overview of WPA/TKIP Encryption

• TK (Temporal Key): 128 bits, used to protect many consecutive frames.

• TSC (TKIP Sequence Counter) : 48 bits, incremented for each frame sent.

• TA (Transmitter Address): 48 bits, MAC address of sender.

76

TK TA TSC

16 byte key

RC4

RC4 keystream

Mixing

WPA/TKIP Key Mixing Function

77

TK TA TSC

13 bytes K2 K1 K0

K0 = TSC 1

K1 = (TSC 1 OR 0x20) AND 0x7f

K2 = TSC 0

(TSC0 and TSC 1 are the two least significant bytes of TSC)

Mixing

Exploiting TSC Information

• We can immediately apply previous statistical attacks to WPA/TKIP, with
quite some success.

• Using keystream distributions for random keys having WPA/TKIP structure.

• See full version of [ABPPS13] for details.

• But recall that WPA/TKIP keys have additional structure:

 K0 = TSC1

 K1 = (TSC1 OR 0x20) AND 0x7f

 K2 = TSC0

• Recall also that the TSC value is transmitted in clear as part of the
WPA/TKIP frame.

78

Exploiting TSC Information

• Idea:

 There may be even larger keystream biases that arise for specific
 (TSC 0,TSC 1) values; these could disappear when aggregating over
all (TSC 0,TSC 1) values.

• Exploitation in plaintext recovery attack:

• Bin available ciphertexts into 216 bins according to (TSC0,TSC 1) value.

• Carry out likelihood analysis in each bin using bin-specific keystream
distribution.

• Multiply likelihoods across bins to compute plaintext likelihoods.

• Similar (but different) ideas were developed in [SMMPS14].

79

Confirming Existence of Large (TSC 0,TSC 1) –specific
Biases

80

0.250%&

0.300%&

0.350%&

0.400%&

0.450%&

0.500%&

0.550%&

0& 32& 64& 96& 128& 160& 192& 224& 256&

P
ro
b
ab

ili
ty
*

Byte*value*

0.340%&

0.380%&

0.420%&

0.460%&

0.500%&

0.540%&

0& 32& 64& 96& 128& 160& 192& 224& 256&

P
ro
b
ab

ili
ty
*

Byte*value*

Output byte 1, (TSC0,TSC 1) = (0x00,0x00) Output byte 33, (TSC0,TSC 1) = (0x00,0x00)

Blue: TSC -specific biases
Red: fully aggregated WPA/TKIP biases

Exploiting TSC Information

• Problem:

 This approach requires a large number of keystreams to get accurate
 estimates for each of the 216 different (TSC0,TSC1)-specific keystream
 distributions.

• At a minimum, we would like to use at least 232 keystreams for each
(TSC0,TSC1) value, hence 248 in total.

• With our local computing setup, computing 224 keystreams for each of the
216 (TSC0,TSC1) values required 26 core days of computation.

• This computation did indicate the presence of many new biases.

• Desired computation would then need 214 core days.

81

TSC 0 Aggregation

• TSC 1 is used in computing two key bytes; TSC0 in only one:

 K0 = TSC 1

 K1 = (TSC 1 OR 0x20) AND 0x7f

 K2 = TSC 0

• Hence we may expect biases to depend more strongly on TSC1 than on TSC0.

• So we could ignore TSC0 and look only at how biases depend on TSC1.

• Effectively, we would then be aggregating biases over TSC0.

• We call this TSC 0 aggregation

• In the plaintext recovery attack, we would then use only 28 bins instead of 216.

• And we’d need 28 times fewer keystreams for estimating distributions.

• Our first attack applied to WPA/TKIP can then be seen as the variant where we aggregate
over both TSC0 and TSC1, using just 1 bin.

• We call this full aggregation.

82

Plaintext recovery based on TSC 0 aggregation:
220 frames

83

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

R
e
co
ve
ry
(r
at
e
(

Byte(posi/ on(

Plaintext recovery based on TSC 0 aggregation:
222 frames

84

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

R
e
co
ve
ry
(r
at
e
(

Byte(posi/ on(

Plaintext recovery based on TSC 0 aggregation:
224 frames

85

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

R
e
co
ve
ry
(r
at
e
(

Byte(posi/ on(

Plaintext recovery based on TSC 0 aggregation:
226 frames

86

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

R
e
co
ve
ry
(r
at
e
(

Byte(posi/ on(

Plaintext recovery based on TSC 0 aggregation:
228 frames

87

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

R
e
co
ve
ry
(r
at
e
(

Byte(posi/ on(

Plaintext recovery with TSC 0 aggregation (blue)
compared to full aggregation (red): 224 frames

88

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

R
e
co
ve
ry
(r
at
e
(

Byte(posi/ on(

Performance of Single-byte Plaintext Recovery Attacks

89

Red: basic attack (full aggregation); blue: TSC 0 aggregation.
Solid line: average over all 256 posns; dotted line: average over odd posns

Big-bias Hunting

• We then obtained a grant from the UK government enabling us
to compute accurate per (TSC 0,TSC 1) keystream distributions.

• We used Amazon EC2 to carry out large-scale single-byte and
double-byte keystream distribution computations.

• For first 512 positions of keystreams in each case.

• Single-byte: 232 keystreams per (TSC 0,TSC 1) value, 248 in total.

• Double-byte: 230 keystreams per (TSC 0,TSC 1) value, 246 in total.

• Total computation was about 63 virtual core years.

• Approximately 5% of computation involved in RSA-768 sieving step.

• (Or just 1% of the latest EPFL computations!)

90

Big-bias Hunting

• We exploited the inherent parallelism in the problem.

• We used, in both computations, 256 ‘c3.x8large’ instances in
parallel.

• 8192 virtual cores, mapping onto 4096 Intel Xeon 2.8GHz
processors.

• Essentially, an entire Amazon EC2 data centre.

• Boto (Python) + Ubuntu 13.10 + OpenSSL + careful cache
optimisations.

• Running cost: $614 per hour (+ 20% tax).

• Make very sure your code is correct before executing it!

• Make sure to terminate instances as soon as computation is done!

91

Big-bias Hunting: Single-Byte Computation

• Single-byte computation ran for 32 hours, or 30 virtual core
years, and cost approximately $20k.

• Produced dataset consisting of 216 x 29 x 28 32-bit integers.

• One counter per (TSC0,TSC1), per position, and per keystream byte
value.

• 32GB of distribution data in total.

92

Big-bias Hunting: Double-Byte Computation

• Double-byte computation ran for 35 hours, or 33 virtual core
years, and cost approximately $23k.

• Produced dataset consisting of 216 x 29 x 216 32-bit integers.

• One counter per (TSC0,TSC1), per position, and per pair of
keystream byte values.

• 8TB in total, storage cost of $410 per month on EC2.

• Data transfer to our local RAID was charged at $0.12 per GB, $983
in total.

• We used bbcp tool developed by experimental physicists; 48 hours
at 50MB per second.

 93

Performance of Single-byte Plaintext Recovery Attacks

94

Red: basic attack (full aggregation); blue: TSC 0 aggregation.
Solid line: average over all 256 posns; dotted line: average over odd posns

Performance of Single-byte Plaintext Recovery Attacks

95

Red: basic attack (full aggregation); blue: TSC 0 aggregation; green: no aggregation.
Solid line: average over all 256 posns; dotted line: average over odd posns

WPA/TKIP Closing Remarks

• Plaintext recovery for WPA/TKIP is possible for the first 256
bytes of frames, provided sufficiently many independent
encryptions of the same plaintext are available.

• Security is far below the level implied by the 128-bit key TK .

• Suitable targets for attack might include fixed but unknown
fields in encapsulated protocol headers.

• Targeting HTTP traffic via client-side Javascript also possible,
as in TLS attacks.

96

Concluding Remarks

Concluding Remarks

• RC4 is still widely used for performance and legacy reasons.

• Don’t underestimate the power of inertia.

• Broadcast attacks can be made practical.

• Interesting statistical questions arise.

• As a community, we should work more on making our attacks
practical and maximising their real-world impact.

• This requires understanding of and interaction with that real
world!

99

“Thank Yous”

My thanks to:

• The Asiacrypt 2014 program chairs and general chairs for the
invitation and for their hospitality.

• My co-authors Bertram Poettering and Jacob Schuldt.

• My additional co-authors on [ABPPS13] – Nadhem AlFardan
and Dan Bernstein.

• Martin Albrecht, Jon Hart and Adrian Thomas at RHUL for their
assistance with sourcing, building and maintaining our local
computing infrastructure and for help in managing AWS.

• EPSRC and the UK government for funding our adventures in
Amazonia.

100

