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RC4 
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RC4 

• Designed by Ron Rivest in late 1980s, became public in 1994. 
• A byte-oriented stream cipher. 

• Variable-length key. 

• Elegant design, fast in software, very compact description, easy to 
implement. 

 

• Widely adopted in secure communications protocols: 
• TLS 

• WEP 

• WPA/TKIP 

• Kerberos 

• MPPE 

• … 
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RC4 
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RC4 State 

Byte permutation    and indices i and j 

RC4 Key scheduling RC4 Keystream generation 
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Cryptanalysis of RC4 (Or: Isn’t RC4 Broken Already?) 

• Given its wide-spread use, RC4 has been subject to a lot of 
cryptanalysis. 

• Biases in keystreams 

• Key/state recovery attacks 

• Related key attacks 

 

• It’s usage in WEP was completely broken, starting with [FMS01]. 
• Full key-recovery attack now possible with 10k-20k packets [SVV11]. 

 

• Many short-term and long-term biases in its keystreams have been 
identified. 

• [FM00], [MS01], [M02], [M05], [MPS11], [SMPS11],… 

 

• Why then is it still so popular in applications? 
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Popularity of RC4 

• It’s fast and easy to implement.  

 

• It’s hard to displace a widely-deployed algorithm without 
practical, demonstrated attacks. 

 

• The WEP disaster can be argued as a special case, where  the 
use of the algorithm was at fault, not the algorithm itself. 

• Composition of key from long-term key and public counter enabled 
special attacks.  

 

• Lack of practical, demonstrated attacks on common 
applications. 
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Attacking RC4 in TLS 
Joint work with Nadhem AlFardan, Daniel J. 
Bernstein, Bertram Poettering and Jacob C.N. 
Schuldt 
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Broadcast Attack Setting  

• Introduced by Mantin-Shamir in 2001. 

 

• Imagine a fixed but unknown plaintext P is encrypted many 
times under RC4 using different keys Ki. 

 

• Attack recovers bytes of P by exploiting biases in RC4 
keystreams. 

 

• Different from usual setting: recover K from many (P,C) pairs. 
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Broadcast Attack – Example 

• Example: 
• Mantin-Shamir bias: Pr[Z2 = 0x00] ≈ 1/128 

• But Cr = Pr  Zr. 

• So C2 = P2 with probability 1/128.  

• Hence, with enough encryptions, can recover P2 directly from C2. 

• Just take the most common value of C2 as estimate for P2! 

 

 

• Does the attack extend to other bytes of plaintext? 

• Is the attack really applicable to RC4 in TLS? 

• How many ciphertexts are needed for reliable plaintext 
recovery? 
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Single-byte Biases in the RC4 Keystream 

[Mantin-Shamir 2001]: 

 

[Mironov 2002]: 

Described distribution of  Z1 (bias away from 0, sine-like distribution)  

 

[Maitra-Paul-Sen Gupta 2011]:  for 3 ≤ r ≤ 255  

 

[Sen Gupta-Maitra-Paul-Sarkar 2011]: 

Zi = value of i-th keystream byte 

l = keylength 
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Approach in [ABPPS13]: 

Based on the output from 245 random independent 128-bit RC4 keys, estimate the 

keystream byte distributions for the first 256 bytes 

 

 

 

 

 

 

 

This computation revealed many new biases in the RC4 keystream. 

(Some of these were independently discovered and exploited in [IOWM13]. ) 

Complete Single-byte Keystream Distributions 

Z1 

... 

Z2 Z3 
... 

... 
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All the Biases 
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Broadcast Attack for RC4 in TLS 

Is the attack really applicable to RC4 in TLS? 

 
• How is the RC4 algorithm actually used in TLS? 

• How much TLS traffic is actually encrypted using RC4? 

• How can we ensure that the same plaintext is repeatedly encrypted 
under different keys? 

• What is a good target for the repeated plaintext? 

• Can we ensure the target plaintext aligns with the positions where 
the keystream biases are present? 

• How can we deal with the fact that there are multiple biases in each 
keystream position Zr? 
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Broadcast Attack for RC4 in TLS 

Is the attack really applicable to RC4 in TLS? 

 
• How is the RC4 algorithm actually used in TLS? 

• How much TLS traffic is actually encrypted using RC4? 

• How can we ensure that the same plaintext is repeatedly encrypted 
under different keys? 

• What is a good target for the repeated plaintext? 

• How can we deal with the fact that there are multiple biases in each 
keystream position Zr? 
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Use of RC4 in TLS 

48 

MAC 

SQN || HDR Application Data 

RC4 Keystream 

Ciphertext 

MAC tag 

 

HDR 

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256  

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128 

Application Data 

  
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Use of RC4 in TLS 

• Fresh 128-bit key for RC4 for each TLS connection. 
• The key is derived from the TLS master secret and nonces exchanged 

in the TLS Handshake Protocol run between TLS Client and Server. 

• Different key in each direction on secure channel. 

• Think of it as a random 128-bit value. 

 

• All bytes of RC4 keystream are used. 

 

• But the first 36 bytes (roughly) are used to encrypt 
unpredictable messages. 

•  The TLS Handshake Finished messages.  

• So the Mantin-Shamir bias is not exploitable in this application  
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• In the face of the BEAST and Lucky 13 attacks on CBC-based ciphersuites in 
TLS, switching to RC4 was a recommended mitigation. 

 

• Use of RC4 in the wild: 
 
 

Rate of RC4 Usage in TLS 

ICSI Certificate Notary 

Jan. 2013 survey of 16 billion TLS connections: 

Approx. 50% protected via RC4 ciphersuites  
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Broadcast Attack for RC4 in TLS 

Is the attack really applicable to RC4 in TLS? 

 
• How is the RC4 algorithm actually used in TLS? 

• How much TLS traffic is actually encrypted using RC4? 

• How can we ensure that the same plaintext is repeatedly encrypted 
under different keys? 

• What is a good target for the repeated plaintext? 

• How can we deal with the fact that there are multiple biases in each 
keystream position Zr? 
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How the Web Works 

browser 

TLS secure channel 

Cookie 
for 

goodsite
.com 
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badsite.com 

goodsite.com 
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How the Web Works 
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• Target plaintext is an HTTP secure cookie for goodsite.com. 

• Browser Same Origin Policy prevents direct access to cookie. 

• JavaScript running in the browser from badsite.com gives attacker the 
repeated plaintext capability. 

• The cookie is added automatically to every HTTP request sent from the 
browser. 

• JavaScript can pad requests in various ways to control exact position of the 
cookie. 

• Attacker needs to force a new TLS connection for each HTTP request. 

• Can do this by having active MITM component closing TCP connection via TCP RST or 
sequence of TCP FIN/ACK messages. 
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Broadcast Attack for RC4 in TLS 

Is the attack really applicable to RC4 in TLS? 

 
• How is the RC4 algorithm actually used in TLS? 

• How much TLS traffic is actually encrypted using RC4? 

• How can we ensure that the same plaintext is repeatedly encrypted 
under different keys? 

• What is a good target for the repeated plaintext? 

• How can we deal with the fact that there are multiple biases in each 
keystream position Zr? 
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We use an optimal statistical procedure based on Bayes’ 
theorem. 

• This automatically deals with the presence of multiple biases in the keystream 
bytes. 

• [IOWM14] used a sub-optimal procedure relying only on the largest bias in each 
position (and did not consider in detail the applicability to TLS). 

Plaintext Recovery for TLS-RC4 

55 



Details of Statistical Analysis 

Let c denote the n-vector of ciphertext bytes in position r. 

We wish to maximise Pr[P=p|C=c]. 

Bayes theorem: 

 Pr[P=p|C=c]  =  Pr[C=c |P=p].Pr[P=p]/Pr[C=c] 

                          =  Pr[Z=c  (p,p,…,p)].Pr[P=p]/Pr[C=c] 

 

Pr[C=c] is independent of the choice of p. 

For simplicity, assume Pr[P=p] is constant. 

Then to maximise Pr[P=p | C=c] over all choices of p, we simply need to 
maximise the expression: 

      Pr[Z=c  (p,p,…,p)].  
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Details of Statistical Analysis 

To maximise Pr[P=p | C=c] over all choices of p, we simply need to maximise 
the expression: 

      Pr[Z=c  (p,p,…,p)].   

Formally, this is the likelihood of the keystream bytes Z=c  (p,p,…,p). 

Let q = (q00, q01,…, qFF) denote the vector of keystream byte probabilities in 
position r. 

Let nx be the number of occurrences of byte value x in Z=c  (p,p,…,p). 

Then:       

   Pr[Z=c  (p,p,…,p)]       =  

Attack: compute this expression for each candidate p and output the value of 
p giving the maximum value. 
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Success Probability 220 Connections 
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Success Probability 221 Connections 
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Success Probability 222 Connections 
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Success Probability 223 Connections 
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Success Probability 224 Connections 
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Success Probability 225 Connections 
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Success Probability 226 Connections 
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Success Probability 227 Connections 



66 

Success Probability 228 Connections 
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Success Probability 229 Connections 
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Success Probability 230 Connections 
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Success Probability 231 Connections 
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Success Probability 232 Connections 



Current Status of RC4 in TLS 

Snapshot from ICSI Certificate Notary Project: 
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Comments 

• Amount of TLS-RC4 traffic is declining, but not as quickly as we might hope. 

• ICSI: from 50% to ~33%. 

• SSL Pulse: 81% of 150k sites surveyed still support RC4. 

• Security Pitfalls: 1% of 400k sites support only RC4! 

 

• But attacks only get better with time… 

• Double-byte bias attack in [ABPPS13] – more ciphertexts, but single connection, so faster 
overall. 

• Exploitation of known plaintext distributions. 

• Ranking of plaintext candidates – e.g. for password recovery, only need password to be in 
top T candidates. 

 

• IT’S TIME TO STOP USING RC4 IN TLS! 
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Big bias hunting in Amazonia:  
Attacking RC4 in WPA/TKIP 
Joint work with Bertram Poettering  
and Jacob C.N. Schuldt 



Introduction to WPA/TKIP 

• WEP,  WPA, WPA2 are all IEEE standards for wireless LAN encryption under the 
802.11 family. 

 

• WEP (1999) is considered to be badly broken 

• Beginning with [FMS01], now roughly 10k-20k packets needed for key recovery. 

• Other attacks on integrity, authentication. 

 

• WPA/TKIP was proposed by IEEE in 2003 as an intermediate solution. 

• Allow reuse of same hardware, firmware-only upgrade. 

• Hence only limited changes to WEP design were possible. 

• Introduction of supposedly stronger per-frame keys (TKIP: Temporal Key Integrity Protocol). 
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Introduction to WPA/TKIP 

• WPA was only intended as a temporary fix. 

• WPA2 (2004) introduces a strong cryptographic solution based 
on AES-CCM. 

 

• But WPA is still in widespread use today. 

• Vanhoef-Piessens (2013):   

 71% of 6803 networks surveyed still permit WPA/TKIP; 19% 
 allowed only WPA/TKIP. 

 

• Significant previous analysis of WPA in [TB09], [SVV11].  
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Overview of WPA/TKIP Encryption 

• TK   (Temporal Key): 128 bits, used to protect many consecutive frames. 

• TSC (TKIP Sequence Counter) : 48 bits, incremented for each frame sent. 

• TA (Transmitter Address): 48 bits, MAC address of sender. 
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TK TA TSC 

16 byte key 

 
RC4 

 

RC4 keystream 

Mixing 



WPA/TKIP Key Mixing Function 
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TK TA TSC 

13 bytes K2 K1 K0 

K0 = TSC 1 

K1 = (TSC 1 OR 0x20) AND 0x7f 

K2 = TSC 0 
 

(TSC0  and TSC 1  are the two least significant bytes of TSC ) 
 

Mixing 



Exploiting TSC Information 

• We can immediately apply previous statistical attacks to WPA/TKIP, with 
quite some success. 

• Using keystream distributions for random keys having WPA/TKIP structure. 

• See full version of [ABPPS13] for details. 

 

• But recall that WPA/TKIP keys have additional structure: 

  K0 =  TSC1 

  K1 = (TSC1 OR 0x20) AND 0x7f  

  K2 =  TSC0 

 

• Recall also that the TSC  value is transmitted in clear as part of the 
WPA/TKIP frame. 
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Exploiting TSC Information 

• Idea:  

 There may be even larger keystream biases that arise for specific 
 (TSC 0,TSC 1) values; these could disappear when aggregating over 
all  (TSC 0,TSC 1) values. 

 

• Exploitation in plaintext recovery attack:  

• Bin available ciphertexts into 216 bins according to (TSC0,TSC 1) value. 

• Carry out likelihood analysis in each bin using bin-specific keystream 
distribution. 

• Multiply likelihoods across bins to compute plaintext likelihoods. 

 

• Similar (but different) ideas were developed in [SMMPS14]. 
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Confirming Existence of Large (TSC 0,TSC 1) –specific 
Biases  
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Exploiting TSC Information 

• Problem:  

 This approach requires a large number of keystreams to get accurate 
 estimates for each of the 216 different (TSC0,TSC1)-specific keystream 
 distributions. 

 

• At a minimum, we would like to use at least 232 keystreams for each 
(TSC0,TSC1) value, hence 248 in total. 

 

• With our local computing setup, computing 224 keystreams for each of the 
216 (TSC0,TSC1) values required 26 core days of computation. 

• This computation did indicate the presence of many new biases. 

 

• Desired computation would then need 214 core days.  
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TSC 0  Aggregation 

• TSC 1 is used in computing two key bytes; TSC0  in only one: 

  K0  =  TSC 1 

  K1  = (TSC 1 OR 0x20) AND 0x7f  

  K2  =  TSC 0  

• Hence we may expect biases to depend more strongly on TSC1  than on TSC0. 

• So we could ignore TSC0  and look only at how biases depend on TSC1. 

• Effectively, we would then be aggregating biases over TSC0. 

• We call this TSC 0  aggregation 

• In the plaintext recovery attack, we would then use only 28 bins instead of 216. 

• And we’d need 28 times fewer keystreams for estimating distributions. 

• Our first attack applied to WPA/TKIP can then be seen as the variant where we aggregate 
over both TSC0  and TSC1, using just 1 bin.  

• We call this full aggregation. 
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Plaintext recovery based on TSC 0  aggregation:  
220 frames 
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Plaintext recovery based on TSC 0  aggregation:  
222 frames 
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Plaintext recovery based on TSC 0  aggregation:  
224 frames 
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Plaintext recovery based on TSC 0  aggregation:  
226 frames 
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Plaintext recovery based on TSC 0  aggregation:  
228 frames 
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Plaintext recovery with TSC 0  aggregation (blue) 
compared to full aggregation (red): 224 frames 

88 

0%#

20%#

40%#

60%#

80%#

100%#

0# 32# 64# 96# 128# 160# 192# 224# 256#

R
e
co
ve
ry
(r
at
e
(

Byte(posi/ on(



Performance of Single-byte Plaintext Recovery Attacks 
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Red: basic attack (full aggregation); blue: TSC 0  aggregation. 
Solid line: average over all 256 posns; dotted line: average over odd posns 



Big-bias Hunting 

• We then obtained a grant from the UK government enabling us 
to compute accurate per (TSC 0,TSC 1) keystream distributions. 

 

• We used Amazon EC2 to carry out large-scale single-byte and 
double-byte keystream distribution computations. 

• For first 512 positions of keystreams in each case. 

• Single-byte: 232 keystreams per (TSC 0,TSC 1) value, 248 in total. 

• Double-byte: 230 keystreams per (TSC 0,TSC 1) value, 246 in total. 

• Total computation was about 63 virtual core years. 

• Approximately 5% of computation involved in RSA-768 sieving step. 

• (Or just 1% of the latest EPFL computations!) 
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Big-bias Hunting 

• We exploited the inherent parallelism in the problem. 

• We used, in both computations, 256  ‘c3.x8large’ instances in 
parallel. 

• 8192 virtual cores, mapping onto 4096 Intel Xeon 2.8GHz 
processors. 

• Essentially, an entire Amazon EC2 data centre. 

• Boto (Python) + Ubuntu 13.10 + OpenSSL + careful cache 
optimisations. 

• Running cost: $614 per hour (+ 20% tax). 

• Make very sure your code is correct before executing it! 

• Make sure to terminate instances as soon as computation is done! 
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Big-bias Hunting: Single-Byte Computation 

• Single-byte computation ran for 32 hours, or 30 virtual core 
years, and cost approximately $20k. 

• Produced dataset consisting of 216 x 29 x 28 32-bit integers. 

• One counter per (TSC0,TSC1), per position, and per keystream byte 
value. 

• 32GB of distribution data in total. 
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Big-bias Hunting: Double-Byte Computation 

• Double-byte computation ran for 35 hours, or 33 virtual core 
years, and cost approximately $23k. 

• Produced dataset consisting of 216 x 29 x 216 32-bit integers. 

• One counter per (TSC0,TSC1), per position, and per pair of 
keystream byte values. 

• 8TB in total, storage cost of $410 per month on EC2. 

• Data transfer to our local RAID was charged at $0.12 per GB, $983 
in total. 

• We used bbcp tool developed by experimental physicists; 48 hours 
at 50MB per second. 
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Performance of Single-byte Plaintext Recovery Attacks 
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Red: basic attack (full aggregation); blue: TSC 0  aggregation. 
Solid line: average over all 256 posns; dotted line: average over odd posns 



Performance of Single-byte Plaintext Recovery Attacks 

 

 

95 

Red: basic attack (full aggregation); blue: TSC 0  aggregation; green: no aggregation. 
Solid line: average over all 256 posns; dotted line: average over odd posns 



WPA/TKIP Closing Remarks 

• Plaintext recovery for WPA/TKIP is possible for the first 256 
bytes of frames, provided sufficiently many independent 
encryptions of the same plaintext are available. 

 

• Security is far below the level implied by the 128-bit key TK . 

 

• Suitable targets for attack might include fixed but unknown 
fields in encapsulated protocol headers. 

 

• Targeting HTTP traffic via client-side Javascript also possible, 
as in TLS attacks. 
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Concluding Remarks 
 



Concluding Remarks 

• RC4 is still widely used for performance and legacy reasons. 

• Don’t underestimate the power of inertia. 

 

• Broadcast attacks can be made practical. 

• Interesting statistical questions arise. 

 

• As a community, we should work more on making our attacks 
practical and maximising their real-world impact. 

• This requires understanding of and interaction with that real 
world! 
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• The Asiacrypt 2014 program chairs and general chairs for the 
invitation and for their hospitality. 

• My co-authors Bertram Poettering and Jacob Schuldt. 

• My additional co-authors on [ABPPS13] – Nadhem AlFardan 
and Dan Bernstein. 

• Martin Albrecht, Jon Hart and Adrian Thomas at RHUL for their 
assistance with sourcing, building and maintaining our local 
computing infrastructure and for help in managing AWS. 

• EPSRC and the UK government for funding our adventures in 
Amazonia. 
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